• [contact-form-7 id=”68688″ title=”Contact form 1″]

    A University of Alabama in Huntsville (UAH) sophomore and his collaborator has used a specialized 3-D printing extruder to printing sugar grids that mimics blood vessels. This invention could lower the costs of printing cellular structures for use in drug testing, says the University.

    Inspired by the 3D printers developed to make specialty candies, sophomore Tanner Carden and collaborator Devon Bane developed the device called ‘the CarmAl extruder’, formally named the Carbohydrate Anhydrous Rapid Manufacturing Aluminum Extruder to extrude a viscous sugar solution.

    “We’re using the sugar molecules in a form of reverse 3D printing,” said Carden. “In this process, we first make the structures we want and then we embed them into a cellular matrix.”

    After cells held in suspension in an agarose solution are grown around the vascular structure, a solvent can be used to wash the sugar away.

    The result is a cell mass that contains vessels like a human organ would.

    The 3D printer uses software to control a solenoid valve that regulates the timing of nitrogen pushing on a sugar solution in the CarmAl extruder. The device uses a modular tip and a heated process at temperatures higher than other extruders to better control the viscosity of the sugar solution for more accurate vascular structures.

    Carden said the structure is better than flat-dish cell cultures currently used because it is more accurately represents living tissue and more test cells can be kept alive using it. “It helps to prevent necrosis in your sample,” says Carden. For example, if the process were used to create liver cells for a drug test, the result “would have vascularization in it that is modeled on how a liver works.”

    This project is about two years old, and is awarded $9,948 in Charger Innovation Fund support for further development by UAH.

    The next step is growing cells around the sugar structures created, and Carden is planning to travel to Wake Forest University’s Institute for Regenerative Medicine to learn from a program already using cells in the 3D printing of biological structures about the techniques and pitfalls involved.

    Further advances to their system could include a unified proprietary software and addition of 5D printing capabilities, which would allow the current grid-like vascular structures to flow and branch in a more natural fashion and truly be created in three dimensions.

    “In five or 10 or maybe 20 years, it will become affordable to actually print a liver or a heart,” Carden says. “At some point you get to the use of stem cells, and personalized medicine becomes very affordable.”

    Posted in 3D Printer Accessories



    Maybe you also like:


    Comments are closed

    Sorry, but you cannot leave a comment for this post.


    Latest Posts

    Latest Video



    In less than one hour, WFNS Neuroanatomy Series Wednesday 12 pm GMT, 8 am EST

    WFNS Neuroanatomy Series Wednesday 12 pm GMT, 8 am EST TO REGISTER https://us02web.zoom.us/webinar/register/WN_tCjkjEphTrayRzDAfo5FbQ YOU TUBE LINK: https://www.youtube.com/channel/UCvMRufu7rEnrIFlbWHScE5A

    Join Mailing List


    “Neuroanatomy through Clinical Cases” , Second Edition by Hal Blumenfeld, Yale University

    SOURCE Printer Friendly Hal Blumenfeld, Yale University School of Medicine The book can be ordered through the Sinauer Associates website. Sample content is also available on that page…. Read More →

    Request a Webcast


    Request Panel Spot

    desertedbeach@hotmail.com please tell us the date, time, studio of Neuroanatomist P P


    MAILING LIST desertedbeach@hotmail.com